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The power consuming amount of neural network has intolerably increased with ever-
increasing amount of number of MAC (Multiply Accumulate) operations and data movements




for computing the machine learning models. Thus, the computing performance for the models
can’t be increased any more under the power constraint systems until much higher energy
efficient model could be developed. To address such challenge, some trials with using in-
memory computing and binary neural networks (BNN), has drawn much attention in the
power-constraint fields like the internet of things (I0T). However, the 1-Bit training process
of conventional methods also needs much training memory/time at a cost of the unstable
training process and the loss of accuracy. This work proposed (1) A column reduction
technique for in-memory machine learning classifier. The proposed method can achieve the
similar accuracy as original full precision with MNIST dataset and with much lower
computing memory (with 16% columns reduced), compared to conventional work. (2) Layer-
wise ensemble technique for BNN to improve the performance of low precision networks via
employing the ensemble learning technique which reduces the error and its standard deviation
by 15% and 54% on CIFAR-10 dataset, respectively, compared to the BNN serving as a
baseline. (3) Training with relaxation of both weights and activations for binary neural
networks to alleviate the variance by the conventional BNN training process (reduced by 2%)
with the experiments of various cases including different optimizers and with or without batch
normalization.

The outline of this thesis is as follows. Chapter 1 presents the concept of low precision
machine learning and the purpose of this work. Chapter 2 introduces the conventional in-
memory boosting classifier and then proposes a column reduction technique to improve the
bit energy efficiency of the in-memory boosting classifier followed by the comparison to the
conventional technique. Chapter 3 presents the low precision neural network and its
instability issue of conventional works and then proposes a layer-wise ensemble method for
the binary neural network (BNN), followed by the experiments to compare the conventional
methods and the proposed one the metrics of the stability and accuracy of the network.
Chapter 4 presents the conventional training process of BNN with relaxation technique and
proposes a new training procedure which employs relaxations to both low precision weights
and activations, followed by the comparisons between proposed method and conventional
training process in various cases of the different optimizers and with/without batch
normalization. Chapter 5 summarizes this thesis.
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